Two for One by Microsoft – Diffusion models and force fields for coarse-grained molecular dynamics

- Research
- 95
Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular dynamics to learn a CG force field without requiring any force inputs during training. Specifically, we train a diffusion generative model on protein structures from molecular dynamics simulations, and we show that its score function approximates a force field that can directly be used to simulate CG molecular dynamics. While having a vastly simplified training setup compared to previous work, we demonstrate that our approach leads to improved performance across several small- to medium-sized protein simulations, reproducing the CG equilibrium distribution, and preserving dynamics of all-atom simulations such as protein folding events.
Help us find great AI content
Never miss a thing! Sign up for our AI Hackr newsletter to stay updated.
AI curated tools and resources. Find the best AI tools, reports, research entries, writing assistants, chrome extensions and GPT tools.
Leave a Reply