SceneDreamer learns to generate unbounded 3D scenes from in-the-wild 2D image collections.
Our method can synthesize diverse landscapes across different styles, with 3D consistency, well-defined depth, and free camera trajectory.

In this work, we present SceneDreamer, an unconditional generative model for unbounded 3D scenes, which synthesizes large-scale 3D landscapes from random noises. Our framework is learned from in-the-wild 2D image collections only, without any 3D annotations. At the core of SceneDreamer is a principled learning paradigm comprising 1) an efficient yet expressive 3D scene representation, 2) a generative scene parameterization, and 3) an effective renderer that can leverage the knowledge from 2D images. Our framework starts from an efficient bird’s-eye-view (BEV) representation generated from simplex noise, which consists of a height field and a semantic field. The height field represents the surface elevation of 3D scenes, while the semantic field provides detailed scene semantics. This BEV scene representation enables 1) representing a 3D scene with quadratic complexity, 2) disentangled geometry and semantics, and 3) efficient training. Furthermore, we propose a novel generative neural hash grid to parameterize the latent space given 3D positions and the scene semantics, which aims to encode generalizable features across scenes and align content. Lastly, a neural volumetric renderer, learned from 2D image collections through adversarial training, is employed to produce photorealistic images. Extensive experiments demonstrate the effectiveness of SceneDreamer and superiority over state-of-the-art methods in generating vivid yet diverse unbounded 3D worlds.

Leave a Reply

Help us find great AI content

Newsletter

Never miss a thing! Sign up for our AI Hackr newsletter to stay updated.

About

AI curated tools and resources. Find the best AI tools, reports, research entries, writing assistants, chrome extensions and GPT tools.

Submit