Few-shot learning involves learning an effective model from only a few labeled datapoints. The use of a small training set makes it difficult to avoid overfitting but also makes few-shot learning applicable to many important real-world settings. In this work, we focus on Few-shot Learning with Auxiliary Data (FLAD), a training paradigm that assumes access to auxiliary data during few-shot learning in hopes of improving generalization. Introducing auxiliary data during few-shot learning leads to essential design choices where hand-designed heuristics can lead to sub-optimal performance. In this work, we focus on automated sampling strategies for FLAD and relate them to the explore-exploit dilemma that is central in multi-armed bandit settings. Based on this connection we propose two algorithms — EXP3-FLAD and UCB1-FLAD — and compare them with methods that either explore or exploit, finding that the combination of exploration and exploitation is crucial. Using our proposed algorithms to train T5 yields a 9% absolute improvement over the explicitly multi-task pre-trained T0 model across 11 datasets.

Leave a Reply

Help us find great AI content

Newsletter

Never miss a thing! Sign up for our AI Hackr newsletter to stay updated.

About

AI curated tools and resources. Find the best AI tools, reports, research entries, writing assistants, chrome extensions and GPT tools.

Submit